
OSwrite: Improving the lifetime of MLC STT-RAM
with One-Step write

Wei Zhao1, Wei Tong1*, Dan Feng1, Jingning Liu1, Jie Xu1, Xueliang Wei1, Bing Wu1, Chengning Wang1,
Weilin Zhu1, Bo Liu2

1Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System
School of Computer Science and Technology, Huazhong University of Science and Technology

Ministry of Education of China, Wuhan, China
2Hikstor Technology Co., LTD, Hangzhou, China

Email:{weiz, tongwei, dfeng, jnliu, xujie dsal, xueliang wei, wubin200, chengningwang, weilinzhu}@hust.edu.cn,
liubo@hikstor.com

Abstract—Spin-Transfer Torque Random Access Memory
(STT-RAM) is a promising cache memory candidate due to high
density, low leakage power, and non-volatility. Multi-Level Cell
(MLC) STT-RAM can further increase density by storing two bits
in the hard and soft domain of a cell respectively. However, MLC
STT-RAM suffers from severe lifetime issues because of its two-
step write operation. As two-step write could incur extra writes
to a cell’s soft domain, which drastically degrades the overall
lifetime of MLC STT-RAM. Thus, it is necessary to reduce the
wear to soft domain so that extend the lifetime of MLC STT-
RAM.

We observe that the most wears to the soft domain are
produced by the hard domain bit flips (i.e. Two-step Transition
and Hard Transition). Based on the observation, we propose
One-Step write (OSwrite) to avoid Two-step Transition (TT) and
Hard Transition (HT). Half-Sized Compression (HSC) removes
HTs and TTs by writing data only to the soft domain through
compression techniques. The compressed data is encoded to
further reduce the writes to soft domain. Besides, Hard Transition
Removal Encoding (HTRE) scheme is used while data cannot be
compressed to less than half-size. HTRE scheme uses a hard flag
to record the state of hard domain flipping to avoid changing its
value. Then, HTRE compresses the hard flag and encodes the soft
data to further reduce the writes to soft domain with encoding
tags stored in the saved space of hard flag. Evaluation results
show that OSwrite can improve the lifetime of MLC STT-RAM
to 2.6×. Our scheme can largely decrease HTs and TTs thus
achieve one-step write. The results show OSwrite reduces write
energy and improves system performance of MLC STT-RAM by
56.2% and 6.4% respectively. Besides, OSwrite reduces hard bit
flips and soft bit flips by 82.8% and 5.3% respectively.

I. INTRODUCTION

The development of big data and in-memory computing has
raised the requirement of large capacity of cache memory. For
instance, IBM Power 8 equips up to 128MB Last Level cache
to alleviate the main memory data communication in these ap-
plications [1]. However, traditional SRAM based cache faces
low density, high refresh power, and scalability challenges.
Emerging non-volatile memory provides feasible solutions to
these problems [2], [3]. Spin-Transfer Torque Random Access
Memory (STT-RAM) has attracted much attention due to its

*Corresponding author: Wei Tong (tongwei@hust.edu.cn)

several advantages such as high density, low leakage power,
good compatibility with CMOS, and low cost [4] [5] [6]. STT-
RAM can be the cache of many high-end embedded processors
due to these excellent characteristics.

Single-Level Cell (SLC) STT-RAM can only store one
logic value through the resistance state of Magnetic Tunneling
Junction (MTJ) device [4]. Recent research progress in MTJ
devices has developed Multi-Level Cell (MLC) STT-RAM to
further enhance cell density by stacking two MTJs in a cell
[7] [8]. Unfortunately, lifetime is a common problem for STT-
RAM. The 1015 programming cycles reported by previous
works are hard to reach [9] [10], and the best endurance test
result for SLC STT-RAM devices so far is less than 4× 1012

cycles. Recently, in the product filed, the MRAM company
Everspin issued their 28nm node 1Gb SLC STT-RAM chip
[11], which can program only 1010 cycles. While beyond the
limited cycles, the bit error rate may start to increase, and
system level ECC is then recommended. As for MLC STT-
RAM, writing two different MTJs in a cell causes asymmetric
write current. The larger write current exponentially degrades
the lifetime of memory cells as dielectric breakdown [12].
MLC STT-RAM suffers from severer lifetime issues compared
with SLC STT-RAM. Besides, the lifetime problem is further
severer due to two-step write [12], which leads to extra writes
to the soft domain. Therefore, the predicted programming
cycles for MLC STT-RAM are maybe less than 1010. This
write endurance is not high enough to satisfy the memory-
intensive applications, and some techniques must be used to
improve the lifetime.

Many wear-leveling techniques [10] [13] [14] have been
proposed to improve the lifetime of non-volatile cache mem-
ory. However, their works mainly focus on the intra-set write
variations and don’t consider the unbalanced write of MLC
STT-RAM. Except for the wear-leveling techniques, some
works put the two-step write operation of MLC STT-RAM into
consideration. They proposed some encoding techniques [9]
[15] [16] to reduce the Two-step Transition (TT) thus improve
the lifetime. However, these existing encoding techniques
mainly focus on reducing TTs, and lifetime improvement

is limited. Our scheme can reduce both the TTs and STs.
Besides, these techniques produce large additional capacity
overhead, and they lead to performance loss due to extra
latency to encode and decode data.

In this paper, we make a detailed analysis of the data
transitions of MLC STT-RAM, and we observe that Two-
step Transition (TT) and Hard Transition (HT) produce the
main wear to the soft domain, which could largely damage
the lifetime of MLC STT-RAM. Besides, Soft Transition (ST)
also makes an impressive contribution to lifetime reduction.
Based on this key observation, we propose One-Step write
(OSwrite) to improve the lifetime of MLC STT-RAM with
performance improvement and effective energy reduction. OS-
write includes two techniques, Half-Sized Compression (HSC)
and Hard Transition Removal Encoding (HTRE). Half-Sized
Compression (HSC) avoids HT and TT by writing data only
to the soft domain. We observe that many cache lines of
L3 cache can be compressed to half or less, these data can
be written to the soft domain with one-step write operation.
Besides, the size of compressed data varies greatly, so we
select a suitable encoding scheme to reduce the soft bit flips
of the compressed data with encoding tags placed in the saved
space. The encoded data are then written to the soft domain
of MLC STT-RAM to achieve one-step write. Next, as for
cache lines that cannot be compressed to less than half-size,
we propose Hard Transition Removal Encoding (HTRE)
scheme to remove HT and TT. We use a hard flag to record
the state of hard domain flipping. If the old and new hard
data are the same, the corresponding hard flag bit is set to
’0’, while flag data bit is set to ’1’ if the hard data updates.
Then the hard flag can be easily compressed by Frequent
Pattern Compression (FPC) due to many existing 0s, and the
soft domain can be encoded with encoding tags stored in the
saved space of hard flag to reduce soft transitions. HTRE can
finish write operation in one-step as well. Besides, we design
a simple flag allocation mechanism to ensure low capacity
overhead of hard flag. Each cache line equips index data to find
the corresponding hard flag. The contributions of this paper are
as follows:

• We analyze the write data pattern of MLC STT-RAM, and
we observe that Two-step Transition and Hard Transition
perform the main contributions to lifetime reduction.
Besides, Soft Transition also makes an impressive degra-
dation in lifetime.

• Based on our observation, we propose OSwrite to im-
prove the lifetime with performance improvement and
efficient energy reduction.

• Experimental results show that OSwrite can improve the
lifetime of MLC STT-RAM to 2.6×, reduce write energy,
and improve system performance by 56.2% and 6.4%
respectively. Besides, OSwrite reduces hard bit flips and
soft bit flips by 82.8% and 5.3% respectively.

The rest of this paper is organized as follows. Section
II introduces some basics of STT-RAM and analyzes the
data patterns of MLC STT-RAM. Moreover, we analyze the

lifetime issue and explain the motivation. Section III describes
the proposed OSwrite strategy and its implementation. The
evaluation results and comparison of OSwrite with the existing
schemes are given in Section IV. Section V shows the related
works. Finally, we conclude our paper in Section VI.

II. BACKGROUND AND MOTIVATION

A. The Basics of STT-RAM

STT-RAM cell is composed of one transistor and one
Magnetic Tunneling Junction (MTJ), i.e. 1T1M structure.
MTJ is the main component of STT-RAM [4], and different
resistance values of MTJ correspond to different logic values
(0 or 1). The transistor can control the current that flows
through the MTJ to write and read data bit. Fig. 1(a) shows
the structure of the SLC STT-RAM cell, and MTJ is com-
posed of two ferromagnetic layers (Free Layer and Reference
Layer) and one oxide barrier layer (MgO). The magnetization
direction of the reference layer is fixed, and the free layer’s
magnetization direction can be parallel (P) or anti-parallel
(AP) to the reference layer. P and AP indicate the cell is
in low resistance state (logical 0) and high resistance state
(logical 1), respectively. STT-RAM is based on MTJ, and the
tunneling magnetoresistance (TMR) ratio of MTJ is typically
small (<200% or <2X) [4]. The TMR is defined as:

TMR = Rap/Rp − 1 (1)

Rap and Rp are the resistance of the AP and P state, respec-
tively. If the MTJ stores two bits, it’s difficult for the write
and read circuit to sense the difference of four states due
to the small TMR. Thereby STT-RAM cannot store two or
more bits in an MTJ. Serial MLC (Fig. 1(b)) stores two bits
by connecting two different-size MTJs in series. Each MTJ
indicates a logical value. Parallel MLC (Fig. 1(c)) utilizes one
single MgO layer with two different-size free layers. The write
and read operation of two kinds of MLC STT-RAM are the
same. In this paper, we assume serial MLC is used.

Free Layer

MgO

Reference Layer

(a) (c)

MgO

(b)

MgO

MgO

Soft

Hard

Hard
Soft

Fig. 1: (a) SLC STT-RAM (b) Serial MLC (c) Parallel
MLC.

Each MLC STT-RAM consists of a hard domain and a soft
domain, and the hard domain needs a larger write current to
switch the logical value compared with the soft domain. MLC
stores Most Significant Bit (MSB) in the hard domain, while
storing the Least Significant Bit (LSB) in the soft domain.
Therefore, writing hard (MSB) changes the value of soft (LSB)
due to the larger write current. To write data correctly, two-step

write [12] is proposed for MLC STT-RAM. This technique
writes hard with a large current Ihard, thus both the soft and
hard are switched to the same logical value. Then restoring soft
with a small current Isoft. Fig. 2(a) shows the detailed write
data pattern transformation. For example, in the data transition
00→10, Ihard is used to update data 00 to 11, and then Isoft
is applied to write 11 to 10. Similarly, reading the data from
an MLC needs two steps as well, which is accomplished by
injecting a low current to the MTJ and estimating the voltage
using a sense amplifier [17]. The read scheme is based on
binary search algorithm as shown in Fig. 2(b). In the first
step, a read current is injected to the MTJ and then derived
VR is compared with Vref1 to determine the logic value of
the soft domain. In the second step, a larger read current is
injected and the voltage is compared with Vref2 or Vref3 to
determine the value of hard domain.

VR

<Vref1?

[X1][X0]

yes no

<Vref2? <Vref3?
yes yesno no

[00] [10] [01] [11]

Step1:

Step2:

(a)

[00] [10]

[01] [11]

(b)Isoft

Ihard

Data:[hard,soft]

Fig. 2: (a) Write operation of MLC (b) Read operation.

B. Analysis of the write data pattern

In general, write operations of MLC STT-RAM can be
summarized as four types:

• Zero Transition (ZT): The new data is the same as old
data. e.g. 00 → 00.

• Soft Transition (ST): Only the LSB of new and old data
are different. e.g. 00 → 01 or 10 → 11.

• Hard Transition (HT): The MSB of new and old data
are different, and the MSB and LSB of new data are the
same. e.g. 00 or 01 → 11.

• Two-step Transition (TT): In this case, writing a data
needs both the Hard Transition and Soft Transition. i.e.
TT = HT + ST. e.g. 00 or 01 → 10.

All kinds of data transition are shown in TABLE I. For
each data transition, there are two values in the brackets. The
two values represent the wear number to the hard and soft
domain, respectively. In the process of an HT, a large current
flows through both the soft and hard domain, resulting in one
wear to both the hard and soft domain. As for TT, soft suffers
from two wears due to one extra ST to restore data. Thus, HT
and TT result in a large number of wears to the soft domains
which largely degrade the lifetime. Besides, in all 16 data
pattern transitions, half of these transitions are TT and HT,
thus leading to large lifetime damage to the soft domain.

C. Data Mapping for MLC based cache

Since the two bits of MLC STT-RAM are asymmetric, thus
accessing the cache line is different from the common cache.

TABLE I: State transitions of MLC STT-RAM [5] [9]
.

From
To 00 01 10 11

00 ZT(0, 0) ST(0, 1) TT(1, 2) HT(1, 1)
01 ST(0, 1) ZT(0, 0) TT(1, 2) HT(1, 1)
10 HT(1, 1) TT(1, 2) ZT(0, 0) ST(0, 1)
11 HT(1, 1) TT(1, 2) ST(0, 1) ZT(0, 0)

1. The latency and energy of a TT equal to the sum of an HT and an ST.
2. The write energy of HT and ST are 1.659nJ and 0.843nJ, respectively.

This section describes three typical block-level data mapping
methods for MLC STT-RAM cache. For example, given a 512-
bit (64-byte) data block and 256 2-bit MLCs, we can put i-th
data bit into i/2-th MLC, this block organization is Direct
Mapping (DM). Fig. 3(a) shows this data mapping method.
DM is a straightforward method without differentiating the
accesses to different parts of the block. Therefore, the latency
is always the worst-case since both the soft and hard bits need
to be sensed regardless of which data word is accessed [18].

To take advantage of the fact that soft region is fast, Bi
et al. proposed Cell Split Mapping (CSM) [8], which stores
one 512-bit cache line data in the soft region of 512 MLCs,
while another block data is stored in the hard region of MLCs.
Fig. 3(b) shows the cell split mapping cache block. This
method can produce a fast way and a slow way. For the hard
region cache lines, if the read and write request is frequent,
the system performance degrades since the prolonged access
latency. Besides, the frequent write causes huge writes to the
soft region cache line data thus degrade lifetime and increase
write energy.

The third way is to put the lower half (bit 0-255) of block
data bits in the soft region of the 256 MLCs, while the rest half
data is stored in the hard region. Fig. 3(c) shows this mapping
method, which is called Interleaved Mapping (IM). IM can
write the lower half with only one step and maintain the word
level data property in the soft and hard region. Besides, there
is no inter-cache line disturb in IM compared with CSM.

MLC0
……

0 1

MLC1

2 3

MLC2

4 5

(a)

Data bit

MLC255

510 511

MLC0
……

0 0

MLC1

1 1

MLC2

2 2

MLC511

511 511

(b)

Data bit

MLC0
……

0 256

MLC1

1 257

MLC2

2 258

(c)

Data bit

MLC255

255 511

soft

hard

Fig. 3: (a) Direct Mapping (b) Cell Split Mapping (c)
Interleaved Mapping.

D. Motivation

We make a detailed discussion about the issues which Hard
Transition and Two-step Transition lead to as follows:

1)Limited lifetime: The lifetime of MLC STT-RAM is
mainly determined by the soft domain since it suffers from
much more wears compared with the hard domain. Besides,
the large number of HTs and TTs cause huge wears to the
soft domains, which can drastically reduce the lifetime.

2)Write energy: As shown in the bottom of TABLE I,
TT and HT consume more energy than ST. These writes
are energy-inefficient, which should be removed as more as
possible.

3)Write latency: MLC STT-RAM can improve density, thus
reduce the cache miss rate. However, the access latency is
prolonged because of two-step read and write, which could
degrade the system performance.

We evaluate the write data pattern of some memory-
intensive benchmarks from SPEC CPU2006 [19]. The system
configuration is listed in TABLE V. We only consider ST, HT,
and TT. ZT is not considered because ZT doesn’t contribute
to the wear of the cell and write energy. The result is shown
in Fig. 4. We test the proportion of three write transitions, and
HT and TT take up most of the write transitions. For some
benchmarks like mcf, sjeng have a large proportion of HT and
TT. Especially in sjeng, HT and TT account for 83.58% of
all data transitions, which causes too much write energy and
degradation of lifetime. Besides, the gray column in Fig. 4
illustrates the contribution of HT and TT to the wear of the
soft domain. The contribution is calculated by the following
formula.

CHT,TT =
wearTT,HT

wearTT,HT,ST
(2)

CHT,TT is the contribution of lifetime degradation that HT
and TT make. wearTT,HT represents the wear number caused
by TT and HT. wearTT,HT,ST is the overall wear number to
the soft domain. The result indicates that nearly at least 70%
lifetime degradation is caused by TT and HT. Most previous
works only consider reducing the number of HT and TT.
However, we find ST also leads to an impressive reduction
in lifetime. This observation motivates us to mainly reduce
HT and TT, and decrease ST at the same time to improve the
lifetime of MLC STT-RAM.

p e r l
b e n c

h
b z i p

2 g c c
b w a v e s m c f

c a l c
u l i x s j e n

g

x a l a
n c b m

k
t o n t

o
o m n e t p

p l b m
g r o m

a c s n a m
d0 . 0

0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Th
e p

rop
ort

ion
 of

 3 d
ata

 pa
tter

ns T T H T S T

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

� � � � � � � � � � � � � � � � �

 � � �
 � � � � � � � � 	 � � � � �

Fig. 4: Write data pattern of MLC STT-RAM.

III. PROPOSED DESIGN

Based on our motivation, we propose One-Step write (OS-
write) to improve the lifetime and energy efficiency of MLC
STT-RAM. OSwrite includes Half-Sized Compression and
Hard Transition Removal Encoding scheme these two main
techniques.

A. Half-Sized Compression

1) Encoding procedure: From the analysis above, Hard
Transition (HT) and Two-step Transition (TT) take a large
portion of data transitions, which leads to large lifetime degra-
dation and energy consumption. Compression is an effective
way to reduce the bit writes so that improves lifetime and
energy efficiency. Previous work [20] [21] shows many cache
lines are compressible. We use Frequent Pattern Compression
(FPC) [22] to compress last level cache (LLC) lines because
of its low implementation and performance overhead. FPC
algorithm compresses 8 frequent 64-bit data patterns in this
work. The frequent patterns are listed in TABLE II. Fig.
5 shows the size distribution of the last level cache line
after compression. We observe that many cache lines can be
compressed. To make full use of the advantages of soft region,
we adopt Interleaved Mapping in our scheme to store as more
data bits as possible in the soft region. Therefore, we propose
Half-Sized Compression (HSC) to write data only in the soft
region thus removing HT and TT. If the compressed cache
lines are less than 256 bits, these data can be fully written
into the soft domain (1 in Fig. 6). HSC reduces write energy,
access latency, and further improves the lifetime of MLC STT-
RAM with one step write. Compression produces extra 24
prefix bits to record the data pattern of each 64-bit word. In
order to ensure one-step operation, these bits are stored in the
soft domain. Thus, the rest space for compressed data must be
less than 232 bits. Fig. 5 shows the ratio of compressed size
less than 232 bits. If the cache line cannot be compressed,
there is no space to store the compression tag in the cache
line data region, we need an extra MLC to store this tag to
indicate this cache line is compressible or not.

p e r l
b e n c

h
b z i p

2 g c c
b w a v e s m c f

c a l c
u l i x s j e n

g

x a l a
n c b m

k
t o n t

o
o m n e t p

p l b m
g r o m

a c s n a m
d0 . 0

0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Th
e s

ize
 di

stri
but

ion
 af

ter
 co

mp
res

sio
n 1 2 3 4 5 6 7 8 (w o r d s)

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 r a t i o o f < 2 3 2

Fig. 5: The size distribution of last level cache lines after
compression.

We observed that after compression, the saved space of
the soft domain varies greatly. Moreover, writing soft data
directly may create many soft transitions, which can reduce
the lifetime of MLC STT-RAM. We use encoding techniques
to reduce soft bit flips of compressed data thus further improve
lifetime and reduce write energy [21]. We adopt Flip-N-Write
(FNW) [24] encoding technique due to its low overhead and
complexity. For n data bits, if i(i>n/2) bits need to be
updated, flipping the data bits can make only n−i(n−i<n/2)
data bits to be written. FNW is a simple encoding technique
to reduce bit flips. Fine-grained FNW can further reduce bit

TABLE II: The compressible data patterns of 64-bit FPC algorithm [22], [23]. The prefix is indicated in red.
Prefix Pattern encoded Example Compressed example Encoded size

000 Zero run 0x0000000000000000 0x0 3 bits

001 8-bits sign-extended 0x000000000000007F 0x17F 11 bits

010 16-bits sign-extended 0xFFFFFFFFFFFFB6B6 0x2B6B6 19 bits

011 Half-word sign-extended 0x0000000076543210 0x376543210 35 bits

100 Half-word, padded with a zero half-word 0x7654321000000000 0x476543210 35 bits

101 Two half-words, each two bytes sign-extended 0xFFFFBEEF00003CAB 0x5BEEF3CAB 35 bits

110 Consisting of four repeated double bytes 0xCAFECAFECAFECAFE 0x6CAFE 19 bits

flips [24] [25], so we can use different encoding granularity
to adapt to corresponding saved space(2 in Fig. 6). Optional
encoding granularity of HSC is 2, 4, 8, 16. Furthermore, the
size and encoding granularity of the compressed data satisfy
the following relationship.

G =


2, Scomp ∈ [0, 154]
4, Scomp ∈ [155, 185]
8, Scomp ∈ [186, 206]
16, Scomp ∈ [207, 218]
no encoding, Scomp ∈ [219, 256]

(3)

Scomp is the size of compressed data, G is the encoding
granularity. The unique G for a compressed cache line can
be determined by the formula above.

The overall encoding process of Half-Sized Compression
(HSC) is diagrammed in Fig. 6. 1-bit tag is used to indicate
whether the cache line can be compressed or not, and prefix
records the data patterns of 8 64-bit words. The compression
and encoding process brings extra overhead, and the detailed
analysis is discussed in section III.D.

New soft data

New hard data

Soft

Hard

 new data

XXX

Prefix Compressed data Saved space Soft

Hard

 granularity encoding

1

2

XXX

Encoding tagPrefix Encoded data XXX Soft

Hard

tagtag

tagtag

512 bits

1 bit

Fig. 6: The encoding process of HSC.

2) Decoding procedure: When the encoded cache line
receives a read request, the HSC decoder works as Fig. 7
depicts. The tag bit and prefix data are first read out. Thus,
the decoder can get the size of compressed data according to
that data bits. The decoder obtains the encoding granularity of
FNW through the compressed data size. Then the encoded data
is decoded by the FNW decoder module. After that, the data
can be decompressed word by word according to the prefix of
each word.

 XXX

Encoding tagPrefix Encoded data XXX Soft

Hard

tagtag

512 bits
1 bit

Compressed data size

Encoding granularity FNW decoding

 XXX

Prefix Compressed data Saved space Soft

Hard

tagtag

New soft data

New hard data

Soft

Hard

Decompression of FPC

Fig. 7: The decoding process of HSC.

B. Hard Transition Removal Encoding scheme

We propose Hard Transition Removal Encoding (HTRE)
scheme to write MLC with only one step while data cannot
be compressed to half-size.

1) Removing Hard Transition: We use Data-Comparison
Write (DCW) [26] to encode the hard domain (1 in Fig.
8). Hard flag stores ’1’ if the new and old value of the hard
domain is different, while the hard flag is set to ’0’ when the
data is the same. By applying this simple XOR method, HT
and TT can be removed. We use SLC STT-RAM to store hard
flag data because SLC STT-RAM has a longer lifetime and
only one-step write compared with MLC STT-RAM [5] [8]
[18]. In Fig. 8, we use 8 MLCs to briefly explain the HTRE
encoding process. The original write operation consumes 5
soft writes and 3 hard writes, which lead to 8 wears to the
soft domain. After step 1 , only 5 soft writes occurs on soft
region. This operation can reduce the hard transitions thus
improve lifetime.

2) Flags compression: The 1st step of HTRE can remove
HT and TT. But there are still many STs in the soft domain,
which can significantly reduce the lifetime of MLC STT-RAM.
In previous work [27], about half of clean words exist in
cache lines, and clean words are not modified in the cache
line update process. Thus, the hard domain exists clean words,
which lead to many 0s data existing in the hard flag after the
1st step encoding. The constant zero data in the hard flag
is easy to be compressed by FPC(2), and when the hard
flag is compressed, the compression tag bit is set to ’1’. We
make experiments and find that more than 86% hard flags are
compressible. Moreover, we observe that the saved space of
the hard flag varies greatly. Thus, we can use the encoding

technique (e.g. FNW) to reduce bit flips of soft domain with
encoding tags stored in the saved space of hard flag. The
encoding granularity varies from 2 to 16, and the optimal
granularity is varied according to the saved space. Besides, We
can encode soft data together with the compressed hard flag
if the saved space is large enough. The encoding granularity
is a function of compression hard flag size, and the function
is listed as follows.

G =



2, Scomp ∈ [1, 76], encode soft and flag
2, Scomp ∈ [77, 116], only encode soft
4, Scomp ∈ [117, 180], only encode soft
8, Scomp ∈ [181, 212], only encode soft
16, Scomp ∈ [213, 228], only encode soft
no encoding, Scomp ∈ [229, 256]

(4)

G indicates the encoding granularity, and Scomp is the size
of compressed hard flag. After the FNW encoding process,
hard flag and soft data are written at the same time to achieve
one-step write. The example in Fig. 8 shows that the writes to
soft domain can be reduced to 3 with flipping the soft data in
step 3 . numhard flag indicates the writes to the hard flag,
and the total writes are less than 8. HTRE can improve the
lifetime of MLC to 266.7% (8/3) and reduce the total write
energy.

1 0 1 0
0 1 1 1

0
0

0
0

0
0

1
1New

data 1 0 0 0
1 0 1 0

1
0

0
1

0
1

0
1

1 0 0 0
0 1 1 1

1
0

0
0

0
0

0
1

1 1
1 0

1 0
0 1

0
1

0
1

0
1

0
0

Old

data

Total：5 soft writes

 3 hard writes

3 soft writes

0 0 1 01 0 0 1

XXXCompressed flag0 1 1 10 0 0 1

 flag

FNW tag XCompressed flag

1

2

3

Flipped

5 soft writes

3 soft writes
 soft writes soft writes

Total：8 soft writes

Total：<8 soft writes

Hard

Soft

0
0

0 Hard Flag

 soft domain with tags storing in hard flag

tagtag

tag

Fig. 8: HTRE encoding process.

3) Hard flag array organization: It’s not necessary to equip
a hard flag for each cache line, we only consider cache lines
that cannot be encoded by Half-Sized-Compression. We use
search logic to dynamically allocate a hard flag for this cache
line. Moreover, we make a series of experiments to determine
suitable flag size due to the trade-off between performance and
capacity overhead. We set up a 1MB hard flag array for 16MB
MLC STT-RAM Last Level Cache with good performance and
low capacity overhead. Fig. 9 shows the organization of the
flag array. 1MB array is divided into 128 blocks, and each
block has 256 rows, each row has 256 bits to store hard
flag data. We assign each row 1 bit to indicate whether it
is valid or not, and each block also has a bit to indicate its
state. When Cacheline htre will be encoded by HTRE. The
search logic1 finds valid block block m. Then, search logic2
finds valid row row n. block m(7-bit) and row n(8-bit) are
written into index array (MLC), and the state of row n is set

’Invalid’. If all rows of a block are ’Invalid’, the state of the
block is ’Invalid’. When Cacheline htre is evicted, the hard
flag of Cacheline htre turns from ’Invalid’ to ’Valid’, thus
this flag can be used for next write request. When CPU reads
Cacheline htre, the decode logic finds corresponding hard flag
position via index data thus decodes the data. The search logic
leads to extra overhead, detailed information is in the following
part.

I

I

I

Search

logic1

I

V

BI

BV

Hard

flag
Search

logic2

BI: Block Invalid V: Valid

BV: Block Valid I: Invalid

 block_m

row_n

Tag

A
d

d
re

ss
 d

ec
o
d

e
r

Cacheline_htre

Data

block_1

block_m

256

rows

row_1

row_n

index Write request

I row_256

Fig. 9: The process of searching valid hard flag.

4) Decoding procedure: When the encoded cache line
receives a read request, the HTRE decoder works as Fig. 10
depicts. The index data is first read out to locate the hard flag.
Then, the decoder reads the compression tag bit to ensure if
this hard flag is compressed. The decoder can get the size of
compressed hard flag according to the prefix, thus the encoding
granularity of FNW can be obtained through data size. Next,
the soft domain data is decoded by the FNW decoder module.
After that, the original hard flag data is decompressed word
by word according to the prefix of each word. In the end, the
hard domain data can be decoded through the XOR operation
between the hard flag data and old hard data.

Encoding tagPrefix Compressed data XXX

256-bit hard flag
1 bit

tagtag

Compressed data size

Encoding granularity FNW decoding

Encoded soft data

Old hard data

② Decoding the soft data

Decompression of FPC

③ Decompression of hard flag

Hard flag datatag

XOR operation

④ Decoding the hard data

New soft data

New hard data

Index

data

Index

data

① Finding the corresponding hard flag

Fig. 10: The decoding process of HTRE.

C. Overall Architecture of OSwrite

Fig. 11 shows the overall encoding procedure of OSwrite.
When LLC receives a write request, the compressor deter-
mines if new data can be compressed to less than half-size.
If the data can be encoded by HSC, then this write is a one-
step operation and all the data can be written only in soft
domain. Secondly, if the search logic finds the remaining hard

flag, this cache line is encoded by HTRE. Finally, when there
is no valid hard flag. These cache lines can be encoded by
course-grained ES-FNW with encoding tag storing in the index
array. ES-FNW is a technique that encoding the hard data
and soft data by Flip-N-Write separately [16]. In the overall
architecture, each cache line equips 16 MLCs. The index data
of HTRE needs 15 bits, and this data is written at the soft
domain of 15 MLCs to ensure one-step write. The rest one
MLC is used to record which scheme that the cache line is
encoded by. To ensure writing this encoding type flag with
one-step and pretty low energy, ’00’, ’01’, ’11’ are used to
represent HSC, HTRE, ES-FNW respectively. Besides, when
a cache line encoded by ES-FNW is evicted, its encoding type
flag is reset to ’00’ to reduce the case of 11→01, which is
a two-step write. TABLE III shows the encoding type flag.
The overall encoding procedure uses pipeline optimization to
reduce performance loss.

Write request to LLC

Compressed to

half-size？

Yes Encode with

Half-Size-

Compression

Have empty

hard flag？

No

Hard Transition

Removal Encoding

Yes

course-grained

ES-FNW

Forward to

write controller

STT-RAM

array

No

Fig. 11: The encoding data flow of OSwrite.

TABLE III: Encoding type flag for different schemes
Encoding scheme Encoding type flag

HSC 00
HTRE 01

ES-FNW 11

Fig. 12 shows the decoding procedure of OSwrite. When
LLC receives a read request, the decoder reads the encoding
type flag to execute the corresponding decoding procedure.
The flag value ’00’, ’01’, ’11’ correspond to HSC decoding,
HTRE decoding, ES-FNW decoding, respectively. After this
process, the correct data can be readout.

D. Overhead Analysis

1) Capacity: OSwrite needs a 1MB SLC STT-RAM flag
for 16 MB LLC, and each 256-bit hard flag equips 2 bits
to indicate if it is compressible and valid. Besides, OSwrite
equips 16 MLCs for each cache line to store the position
of hard flag and indicate the encoding type. Thus, capacity
overhead is roughly 12.55%.

2) Hardware: OSwrite needs compression and encoding
hardware to perform the one-step write. The main hardware
logic overhead is shown in TABLE IV. The encoding and
decoding overhead of FPC and FNW are cited from [21] [23].
We use the Synopsys Design Compiler to synthesis the search
logic and multiplexer in 130nm technology, and we use scaling

Read request to LLC

Flag=00

HTRE decoding

No

Identify the encoding

type flag

 HCS decoding

Flag=01

ES-FNW decoding

Flag=11

Return data

Fig. 12: The decoding data flow of OSwrite.

rules of transistors to scale the results down to 22nm process
node. Thus the latency of search logic is 0.26ns, and the energy
consumption is 1.9pJ. The latency and energy overhead of
multiplexer is 1.36ns and 1.8pJ respectively. The encoding
and decoding parameters of ES-FNW are derived from [16].

TABLE IV: Latency and energy overhead of OSwrite

Implementation Latency Energy

FPC
Encoding: 2ns
Decoding: 1ns

Encoding: 2.1pJ
Decoding: 1.2pJ

Flip-N-Write
Encoding: 1ns

Decoding: 0.1ns
negligible

Search logic 0.26ns 1.9pJ
Multiplexer 1.49ns 1.68pJ

IV. EXPERIMENTAL SETUP

We use full system simulator Gem5 [28] to evaluate several
schemes. TABLE V lists the system configuration, and we
select 14 benchmarks from SPEC CPU 2006 [19] to evaluate
the results of our scheme. We run 100 million instructions
to warm up the cache and then run 500 million instructions
for the evaluation of our design. We use MLC STT-RAM to
replace traditional SRAM based Last Level Cache, and the
configuration of STT-RAM is listed in TABLE VI.

TABLE V: System configurations
Cores 4-Core, 2.0GHz, out-of-order

L1 I/D cache
private, 32KB per core, 2-way;

LRU, 2-cycle latency

L2 Cache
private, 512KB per core, 64B cache line;

8-way, LRU, 10-cycle latency

L3 Cache
MLC STT-RAM based cache, 16MB;
SLC STT-RAM based cache, 8MB ;

shared, 64B cache line, 16-way, LRU;
Main Memory 4GB, DDR-1600

We make comparisons with the following schemes:
• SLC: We use 8MB SLC STT-RAM to be the last level

cache.
• DCW [26]: Writing data by Data Comparison Write.

TABLE VI: The parameters of STT-RAM [5]
SLC MLC

Read Latency (Cycles) 5.5
S:4.08
H:5.94

Write Latency (Cycles) 15.5
S: 15.34
H:34.24

Read Energy (nJ) 0.216
S:0.22
H:0.43

Write Energy (nJ) 0.839
S:0.843
H:2.502

• TSTM [9]: Every 3 MLCs represents the data of 2 MLCs,
this scheme reduces the number of Two-step Transitions
to improve the lifetime.

• ES-FNW [16]: The data bits of the soft and hard domain
are encoded by FNW respectively. In this work, we give
each 4 data bits 1 flip tag to drastically reduce bit flips.

• HSC+ES-FNW: Encoding the cache lines that can be
compressed to half-size with HSC. Besides, the other
cache lines are encoded by ES-FNW, and each 4 data
bits have 1 flip bit.

• OSwrite: Encoding cache lines with HSC and HTRE to
write MLC STT-RAM in one-step.

1) Lifetime: Oswrite can reduce the wear to soft domain thus
improve lifetime. We use the following formula to indicate the
lifetime of MLC STT-RAM.

lifetime =
Nsoft wearing

capacity
(5)

Nsoft wearing represents the wearing number of the soft
domain of MLC. The capacity in our scheme doesn’t include
the SLC hard flag since SLC has a much longer lifetime.
Moreover, the hard flag cannot be firstly worn out since it
suffers from much fewer wears than MLC STT-RAM. We
assume some wear-leveling techniques [14] [29] are used
to balance the cell non-uniform write. Fig. 13 shows the
normalized lifetime of different schemes. SLC STT-RAM
doesn’t appear in the figure since it has a much longer lifetime
than MLC. TSTM, ES-FNW, HSC+ES-FNW, OSwrite can
improve lifetime by 1.62×, 1.7×, 2.03×, 2.6×, respectively
compared with DCW. OSwrite reduces a large portion of Hard
Transition and Two-step Transition thus significantly reduces
the wears to soft domain. Furthermore, OSwrite can further
reduce Soft Transition to improve the lifetime of MLC STT-
RAM.

p e r l
b e n

c h b z i p
2 g c c

b w a v e s d e a l
I I
c a l c

u l i x s j e n
g

l i b q
u a n

t u m t o n t
o
o m n e t p

p l b m
g r o m

a c s n a m
d w r f

g m e a n
0
1
2
3
4
5
6
7

No
rm

aliz
ed

life
tim

e D C W
 T S T M
 E S - F N W
 H S C + E S - F N W
 O S w r i t e

Fig. 13: Normalized lifetime.

2)Bit flips: The calculation of bit flips contains the data bits,
tag bits, and the SLC hard flag. The result of normalized soft
bit flips of several schemes is shown in Fig. 14, and soft bit
flipping is caused by Soft Transition and Two-step Transition.
SLC STT-RAM, TSTM, ES-FNW, HSC+ES-FNW, OSwrite
can reduce soft bit flips by -169.8%, -17.7%, 29.5%, 25.8%,
5.3% on average, respectively. Due to the small capacity, SLC
receives many cache miss write requests from the memory
side. TSTM leads to more soft bit flips due to writing 50%
extra MLCs. OSwrite brings extra writes on SLC hard flag,
thus the soft bit flips reduction is not very significant.

 S L C D C W
 T S T M E S - F N W
 H S C + E S - F N W O S w r i t e

p e r l
b e n

c h b z i p
2 g c c

b w a v e s d e a l
I I
c a l c

u l i x s j e n
g

l i b q
u a n

t u m t o n t
o
o m n e t p

p l b m
g r o m

a c s n a m
d w r f

g m e a n
0
1
2
3
4
5
6
7

No
rm

aliz
ed

sof
t b

it f
lip

s
Fig. 14: Normalized soft bit flips.

Fig. 15 shows normalized hard bit flips. Hard bit flipping
is caused by Hard Transition and Two-step Transition. TSTM,
ES-FNW, HSC+ES-FNW, OSwrite can reduce hard bit flips by
5.2%, 27.0%, 54.4%, 82.8%. OSwrite can largely remove Hard
Transition and Two-step Transition thus improve the lifetime.
Hard Transition and Two-step Transition can be nearly totally
removed in gcc, bwaves, calculix, sjeng, libquantum etc. This
is because almost all cache lines are encoded by HSC and
HTRE.

0.0
012

7

9.9
211

4E
-4

5.0
734

9E
-5

8.3
150

4E
-6

0.0
061

2
3.7

741
6E

-5
2.2

485
4E

-6

0 6.8
203

9E
-5

p e r l
b e n c

h
b z i p

2 g c c
b w a v e s d e a l

I I
c a l c

u l i x s j e n
g

l i b q
u a n t

u m t o n t
o

o m n e t p
p l b m

g r o m
a c s n a m

d w r f
g m e a n

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8

No
rm

aliz
ed

har
d b

it f
lip

s D C W T S T M E S - F N W
 H S C + E S - F N W O S w r i t e

Fig. 15: Normalized hard bit flips.

3) Write energy: Fig. 16 shows normalized dynamic write
energy of several schemes, and SLC STT-RAM, TSTM, ES-
FNW, HSC+ES-FNW, OSwrite can reduce write energy by
9.4%, -3.0%, 28.2%, 43.8%, 56.2% compared with DCW.
TSTM has additional 50% MLCs, which brings extra energy
consumption. ES-FNW can reduce soft bit flips and hard bit
flips to reduce energy consumption. OSwrite obtains the most
significant write energy reduction by greatly decreasing Hard
Transition and Two-step Transition.

p e r l
b e n

c h b z i p
2 g c c

b w a v e s d e a l
I I
c a l c

u l i x s j e n
g

l i b q
u a n

t u m t o n t
o
o m n e t p

p l b m
g r o m

a c s n a m
d w r f

g m e a n
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0

No
rm

aliz
ed

dy
nam

ic w
rite

 en
erg

y
 S L C D C W
 T S T M E S - F N W
 H S C + E S - F N W O S w r i t e

Fig. 16: Normalized dynamic write energy.

4) Performance: The cache access latency is determined
by the worst cell write latency. OSwrite can reduce write
latency by one-step write, thus improve the performance of the
system. Although the encoding and decoding process brings
extra latency, this overhead is much smaller compared with
write latency.

We use Instruction Per Cycle (IPC) speedup to evaluate
system performance. The IPC speedup is defined as follows.

IPCspeedup =
IPC

IPCbaseline
(6)

Fig. 17 depicts the normalized IPC speedup of several
schemes. SLC STT-RAM, TSTM, ES-FNW, HSC+ES-FNW,
OSwrite can improve IPC by -9.2%, -0.9%, -0.6%, 3%, 6.4%
compared with DCW. Although the SLC has a lower access
latency, the capacity miss penalty leads to worse performance
than the MLC. ES-FNW and TSTM bring extra latency
because of the encoding and decoding process, resulting in
little performance loss. OSwrite can half the access latency
thus improve the system performance.

p e r l
b e n

c h b z i p
2 g c c

b w a v e s d e a l
I I
c a l c

u l i x s j e n
g

l i b q
u a n

t u m t o n t
o
o m n e t p

p l b m
g r o m

a c s n a m
d w r f

g m e a n
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1
1 . 2
1 . 3

No
rm

aliz
ed

IPC

 S L C M L C T S T M E S - F N W H S C + E S - F N W O S w r i t e

Fig. 17: Normalized IPC speedup.

V. RELATED WORKS

A. Improving the lifetime of STT-RAM

Some existing works have proposed some wear-leveling
techniques to improve the lifetime of STT-RAM. Chen et al.
[10] proposed a set-remapping wear leveling for MLC STT-
RAM cache. Sparsh et al. [13] proposed LastingNVcache to
improve the lifetime by mitigating the intra-set write variation.
i2WAP [14] improved non-volatile cache lifetime by reducing
both the inter-set and intra-set write variations.

Meanwhile, several works proposed encoding techniques
to improve lifetime by reducing Two-step Transitions. Luo

et al. [9] proposed Two-Step State Transition Minimization
(TSTM) encoding which minimizes the Two-step Transition
by choosing the optimal encoding type. Xu et al. [16] proposed
ES-FNW to execute FNW encoding separately for the soft and
hard domain data, thus improving lifetime by reducing both
the soft and hard bit flips. Ahmad et al. [15] extended the
lifetime by minimizing two-step and hard state transitions in
hot bits.

B. Reducing the write energy of STT-RAM

The dynamic write energy of STT-RAM is higher than
SRAM. Some existing works aim to reduce energy con-
sumption at several levels. In circuit level, Bishnoi et al.
[30] proposed Asynchronous Asymmetrical Write Termination
(AAWT) which utilizes this asymmetrical behavior to termi-
nate the write operations asynchronously and as a result signif-
icantly reduces the write power consumption. In architecture
level, Ahn et al. [31] proposed Dead Write Prediction Assisted
STT-RAM Cache Architecture (DASCA), which predicts and
bypasses dead writes for write energy reduction. Wang et al.
[18] proposed an architectural design to dynamically recon-
figure the cache block size for an MLC STT-RAM last-level
cache. This method placed certain hot data chunks in smaller
blocks so as to benefit from the lower latency and energy.
Besides, some encoding schemes such as ES-FNW [16] can
reduce the hard and soft bit flips thus reduce the write energy.

C. Compression and Encoding schemes

Some works proposed encoding techniques for emerging
non-volatile memory to reduce write energy and lower write
latency. Liu [20]et al. proposed to use compression techniques
to reduce the write energy of MLC STT-RAM. For Triple
Level Cell (TLC) NVMs, CRADE [32] and CompEx [23]
integrated data compression with expansion coding to reduce
write energy and latency. Xu et al. [21] proposed COEF
to compress the cache line and use encoding schemes to
reduce bit flips of Phase Change Main memory. Zhang et al.
[33] combined Frequent Pattern Compression technique and
Incomplete Data Mapping [34] to reduce the write energy and
access latency of TLC ReRAM.

VI. CONCLUSION

In this work, we propose One-Step write (OSwrite), which
aims to improve the lifetime of MLC STT-RAM by reducing
the wear to the soft domain. We analyze the write data
pattern and find Hard Transition (HT) and Two-step Transition
(TT) significantly reduce the lifetime of MLC STT-RAM, and
Soft Transition (ST) also makes an impressive contribution
to lifetime reduction. Then we propose OSwrite to mainly
reduces HT and TT. Some light-weight encoding techniques
are used to reduce ST as well. Evaluation results show that
OSwrite can improve the lifetime of MLC STT-RAM to 2.6×,
reduce write energy, and improve system performance by
56.2% and 6.4% respectively. Besides, OSwrite reduces hard
bit flips and soft bit flips by 82.8% and 5.3% respectively.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
comments and suggestions. This work was supported in part
by the National Natural Science Foundation of China un-
der Grant 61832007, Grant 61821003, Grant 61772222, and
Grant U1705261, in part by the Fundamental Research Funds
for the Central Universities No.2019kfyXMBZ037, and in
part by National Science and Technology Major Project No.
2017ZX01032-101.

REFERENCES

[1] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel,
“Approximation-aware multi-level cells stt-ram cache architecture,” in
Proceedings of the 2015 International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems. IEEE Press, 2015, pp.
79–88.

[2] C. Wang, D. Feng, W. Tong, J. Liu, B. Wu, W. Zhao, Y. Zhang, and
Y. Chen, “Improving write performance on cross-point rram arrays by
leveraging multidimensional non-uniformity of cell effective voltage,”
IEEE Transactions on Computers, 2020.

[3] C. Wang, D. Feng, W. Tong, J. Liu, Z. Li, J. Chang, Y. Zhang,
B. Wu, J. Xu, W. Zhao, Y. Li, and R. Ren, “Cross-point resistive
memory: Nonideal properties and solutions,” ACM Trans. Des. Autom.
Electron. Syst., vol. 24, no. 4, Jun. 2019. [Online]. Available:
https://doi.org/10.1145/3325067

[4] S. Yu and P.-Y. Chen, “Emerging memory technologies: Recent trends
and prospects,” IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp.
43–56, 2016.

[5] X. Chen, N. Khoshavi, J. Zhou, D. Huang, R. F. DeMara, J. Wang,
W. Wen, and Y. Chen, “Aos: adaptive overwrite scheme for energy-
efficient mlc stt-ram cache,” in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, 2016, pp. 1–6.

[6] W. Wen, Y. Zhang, M. Mao, and Y. Chen, “State-restrict mlc stt-ram
designs for high-reliable high-performance memory system,” in 2014
51st ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2014, pp. 1–6.

[7] Y. Zhang, L. Zhang, W. Wen, G. Sun, and Y. Chen, “Multi-level cell stt-
ram: Is it realistic or just a dream?” in 2012 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2012, pp.
526–532.

[8] X. Bi, M. Mao, D. Wang, and H. Li, “Unleashing the potential of mlc stt-
ram caches,” in 2013 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2013, pp. 429–436.

[9] H. Luo, J. Hu, L. Shi, C. J. Xue, and Q. Zhuge, “Two-step state transition
minimization for lifetime and performance improvement on mlc stt-
ram,” in Proceedings of the 53rd Annual Design Automation Conference.
ACM, 2016, p. 171.

[10] Y. Chen, W.-F. Wong, H. Li, and C.-K. Koh, “Processor caches with
multi-level spin-transfer torque ram cells,” in Proceedings of the 17th
IEEE/ACM international symposium on Low-power electronics and
design. IEEE Press, 2011, pp. 73–78.

[11] S. Aggarwal, H. Almasi, M. DeHerrera, B. Hughes, S. Ikegawa,
J. Janesky, H. Lee, H. Lu, F. Mancoff, K. Nagel et al., “Demonstration
of a reliable 1 gb standalone spin-transfer torque mram for industrial
applications,” in 2019 IEEE International Electron Devices Meeting
(IEDM). IEEE, 2019, pp. 2–1.

[12] Y. Chen, X. Wang, W. Zhu, H. Li, Z. Sun, G. Sun, and Y. Xie,
“Access scheme of multi-level cell spin-transfer torque random access
memory and its optimization,” in 2010 53rd IEEE International Midwest
Symposium on Circuits and Systems. IEEE, 2010, pp. 1109–1112.

[13] S. Mittal, J. S. Vetter, and D. Li, “Lastingnvcache: A technique for
improving the lifetime of non-volatile caches,” in 2014 IEEE Computer
Society Annual Symposium on VLSI. IEEE, 2014, pp. 534–540.

[14] J. Wang, X. Dong, Y. Xie, and N. P. Jouppi, “i 2 wap: Improving non-
volatile cache lifetime by reducing inter-and intra-set write variations,”
in 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2013, pp. 234–245.

[15] I. Ahmad, M. Imdoukh, and M. G. Alfailakawi, “Extending multi-level
stt-mram cell lifetime by minimising two-step and hard state transitions
in hot bits,” IET Computers & Digital Techniques, vol. 11, no. 6, pp.
214–220, 2017.

[16] J. Xu, D. Feng, W. Tong, J. Liu, and W. Zhou, “Encoding separately:
An energy-efficient write scheme for mlc stt-ram,” in 2017 IEEE
International Conference on Computer Design (ICCD). IEEE, 2017,
pp. 581–584.

[17] S. Hong, J. Lee, and S. Kim, “Ternary cache: Three-valued mlc stt-
ram caches,” in 2014 IEEE 32nd International Conference on Computer
Design (ICCD). IEEE, 2014, pp. 83–89.

[18] J. Wang, P. Roy, W.-F. Wong, X. Bi, and H. Li, “Optimizing mlc-based
stt-ram caches by dynamic block size reconfiguration,” in 2014 IEEE
32nd International Conference on Computer Design (ICCD). IEEE,
2014, pp. 133–138.

[19] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[20] L. Liu, P. Chi, S. Li, Y. Cheng, and Y. Xie, “Building energy-efficient
multi-level cell stt-ram caches with data compression,” in 2017 22nd
Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2017, pp. 751–756.

[21] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, and C. Li, “Extending the
lifetime of nvms with compression,” in 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp.
1604–1609.

[22] A. Alameldeen and D. Wood, “Frequent pattern compression: A
significance-based compression scheme for l2 caches,” University of
Wisconsin-Madison Department of Computer Sciences, Tech. Rep.,
2004.

[23] P. M. Palangappa and K. Mohanram, “Compex: Compression-expansion
coding for energy, latency, and lifetime improvements in mlc/tlc nvm,”
in IEEE International Symposium on High Performance Computer
Architecture, 2016.

[24] S. Cho and H. Lee, “Flip-n-write: a simple deterministic technique to
improve pram write performance, energy and endurance,” in Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture. ACM, 2009, pp. 347–357.

[25] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, “Coset coding to extend
the lifetime of memory,” in 2013 IEEE 19th International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 2013, pp.
222–233.

[26] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu, “A low
power phase-change random access memory using a data-comparison
write scheme,” in 2007 IEEE International Symposium on Circuits and
Systems. IEEE, 2007, pp. 3014–3017.

[27] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, C. Li, G. Xu, and Y. Chen,
“Adaptive granularity encoding for energy-efficient non-volatile main
memory,” in Proceedings of the 56th Annual Design Automation Con-
ference 2019. ACM, 2019, p. 114.

[28] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[29] V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-efficient
encryption for non-volatile memories,” ACM SIGPLAN Notices, vol. 50,
no. 4, pp. 33–44, 2015.

[30] R. Bishnoi, M. Ebrahimi, F. Oboril, and M. B. Tahoori, “Asynchronous
asymmetrical write termination (aawt) for a low power stt-mram,” in
2014 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2014, pp. 1–6.

[31] J. Ahn, S. Yoo, and K. Choi, “Dasca: Dead write prediction assisted stt-
ram cache architecture,” in 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2014, pp.
25–36.

[32] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, C. Li, and W. Zhou, “Improving
performance of tlc rram with compression-ratio-aware data encoding,”
in 2017 IEEE International Conference on Computer Design (ICCD).
IEEE, 2017, pp. 573–580.

[33] Y. Zhang, D. Feng, W. Tong, J. Liu, C. Wang, and J. Xu, “Tiered-reram:
A low latency and energy efficient tlc crossbar reram architecture,”
in 2019 35th Symposium on Mass Storage Systems and Technologies
(MSST). IEEE, 2019, pp. 92–102.

[34] D. Niu, Q. Zou, C. Xu, and Y. Xie, “Low power multi-level-cell resistive
memory design with incomplete data mapping,” in 2013 IEEE 31st
International Conference on Computer Design (ICCD). IEEE, 2013,
pp. 131–137.

