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Abstract—Recent advances in Resistive RAM (ReRAM) have
explored the in-situ Matrix-Vector Multiplication (MVM) ability
of crossbar arrays to achieve high energy-efficiency Process-In-
Memory (PIM) architectures for Convolutional Neural Network
(CNN), image processing, and so on. However, the existing
ReRAM-based PIM architectures suffer from considerable ad-
ditional auxiliary logic and device variations. In this work, we
propose a novel analog computing architecture NB Engine for
classification by implementing Naive Bayesian (NB) algorithm
on ReRAM crossbar arrays. The two key steps of the NB
algorithm, that is, probability calculation and electing the class
that has the highest probability, are elaborately accomplished
in our architecture. The ReRAM arrays are both used as
storage and computation components. We store the pre-calculated
prior probabilities and conditional probabilities of every class
in crossbar arrays. Then the probability calculation step is
completed in parallel through the MVM operation of the array.
In general, the election step is a multiple-comparison procedure
and is normally implemented by a comparison tree. Here, we
reuse the max pooling module in a conventional CNN PIM
architecture to realize a compatible comparison logic. However,
neither of the two designs can avoid the overhead of costly
high bit-precision Analog-to-Digital Converters (ADCs). So we
introduce a novel analog parallel comparison design which does
not need any ADCs or other computing logic with better energy-
saving and area-efficiency. Our proposed NB Engine is tested
by 11 various datasets. The influence of several non-ideal device
properties is discussed and the NB Engine exhibits great tolerance
to these variations. The experiment results show that our design
offers a runtime speedup up to 2289.6× compared with the
software-implemented NB classifier with negligible accuracy loss.
In addition, the NB Engine saves 96.2% energy consumption
and 45.2% array area compared with the CNN PIM compatible
design.

I. INTRODUCTION

Conventional von Neumann computation architectures adopt

the separate processing units (e.g. CPU) and storage compo-

nents (e.g. memory and disks). When dealing with massive

data and computation, the limitations of the sequential von

Neumann architecture are exposed as the data movement
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between processing units and the memory becomes the major

bottleneck of the system causing “memory wall” challenges.

The data transfer between CPU and off-chip memory intro-

duces non-negligible latency (around 80ns memory access

speed vs. <1ns floating point operation) and huge energy

(two orders of magnitude more energy than a floating point

operation [1]). Applications like the neural networks put

pressure on the current von Neumann system as they are both

memory-intensive and computational-intensive.

Recent years, many ReRAM-based Processing-In-Memory

(PIM) architectures for convolutional neural networks [2, 3] or

other deep learning algorithms [4] are proposed to tackle the

“memory wall” challenges. The adjustable resistance ReRAM

and its crossbar structure have made it possible to realize both

storage and computing in the same array. However, there are

still some practical problems in the existing ReRAM-based

PIM architectures. The considerable additional auxiliary logic

is one of the main challenges. The complexity of the training

process in the neural networks such as the gradient descent

method makes it costly to be implemented in the PIM archi-

tecture as lots of extra computing circuits are needed. Even

if only the testing process is concerned, high bit-precision

DACs, ADCs, and other auxiliary computation logic are still

required that incur non-negligible area and energy overhead

[2–6]. Thus, some works aim to reduce the interface overhead

by merging the interface [7] or a bitwise model [8].

In this paper, a novel PIM architecture for Naive Bayesian

(NB) algorithm, called NB Engine, is proposed to tackle these

issues. NB algorithm is widely used to address classification

problems due to its good performance, simple structure, and

interpretability. The two key steps of the NB algorithm are

the probability calculation and the election of a class with the

highest probability. First, we elaborately map the probability

calculation step of the NB algorithm to the crossbar array

and execute it in parallel by the MVM ability of the array.

Second, in order to elect the class that has the highest prob-

ability, high bit-precision ADCs and additional comparison

circuits (e.g. comparison trees) are needed. Instead of using

comparison trees for the election operation, we reuse the max-

pooling module in the conventional CNN PIM architecture to

realize the comparison logic (a CNN PIM compatible design).

Moreover, we introduce a novel parallel analog comparison
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design that eliminates the costly ADCs bringing better energy-

saving and area-efficient. In our analog comparison design,

we use two election modes increasing and binary searching to

approximate the result respectively. The proposed architecture

exhibits great tolerance to device variations. Sometimes the

variations (noises) provide a form of regularization which

can help it work better. The sensitivity to the bit-precision

and election modes are also studied. The experiment results

show that our design offers a runtime speedup up to 2289.6×
compared with the software-implemented NB classifier with

negligible accuracy loss. In addition, our NB Engine saves

96.2% energy consumption and 45.2% array area compared

with the CNN PIM compatible design.

The contributions of this paper are summarized as follows:

• For the first time, we propose a novel analog computing

PIM architecture for NB algorithm to get rid of the

considerable additional circuits.

• We elaborately map the probability calculation step of the

NB algorithm to the crossbar array so that the calculation

is completed in one step by the MVM ability of the array.

• We introduce a novel parallel analog comparison design

to elect the final class without the costly ADCs.

• The experiment results show the effectiveness of our

design from aspects of testing accuracy, performance,

energy consumption, and area. Our work also proves that

variations (noises) can sometimes make the results better.

II. PRELIMINARY

A. ReRAM Device and Computable Crossbar Array

Figure 1(a) depicts a schematic view of a ReRAM cell.

It has a very simple metal-insulator-metal (MIM) structure: a

storage layer is sandwiched between the top electrode (TE) and

bottom electrode (BE) [9, 10]. A widely accepted filamentary

model is used in this paper, in which the switching process

of ReRAM is interpreted as the formation or rupture of

conductive filaments (CFs) within a cell. The resistance of

a ReRAM cell can be programmed to any arbitrary value by

applying a programming current with different pulse width

and amplitude to the TE & BE. As shown in Figure 1(b),

the resistance of a ReRAM cell varies under positive (P) and

negative (D) voltage pulses [11].

ReRAM cells can be directly interconnected to each other

without transistors, which is called crossbar array. It has a

maximum area efficiency of 4F 2 per cell. Recent studies in

ReRAM crossbar array also make it a natural implementation

of the matrix-vector multiplication (MVM). Figure 1(c) shows

a conceptual example of a MVM in the crossbar array. The

current flowing through a ReRAM cell at the wordline i and

bitline j is equal to ViGij . Here, Vi is the voltage applied to

the wordline i and Gij is the conduction of the cell. The total

current through the bitline j is
∑

i ViGij , which implements

a dot product of �V · �Gj . Hence, the bitlines together form the

result of a MVM GT �V . The algorithm complexity of MVM is

reduced from O(n2) to O(1). So recent studies take advantage

of the MVM ability in the ReRAM array to optimize machine

Fig. 1. (a) ReRAM cell. (b) Changeable resistance of the ReRAM cell under
positive (P) and negative (D) voltage pulses. (c) Crossbar array and its matrix-
vector multiplication (MVM) ability.

learning algorithms [2, 12], image processing [13], function

solver [14], and etc.

B. Naive Bayesian Algorithm

For any event A, the conditional probability of A given B

is defined by:

P (A|B) =
P (AB)

P (B)
. (1)

By deforming the eq.1, we can get the Bayesian theorem:

P (A|B) =
P (B|A)P (A)

P (B)
, (2)

which gives the relationship between P (A|B) and P (B|A).
1) Naive Bayes: Naive Bayes is a kind of classification

algorithm based on the Bayesian theorem. Given a test instance

x, represented by an attribute value vector (a1, a2, ..., am). The

goal of NB is to find a class label c which has the maximum

conditional probability of c given x:

ĉ(x) = argmax
c∈C

P̂ (c|x), (3)

where C is the collection of all possible class labels c. Then

ĉ(x) is the predicted class label of given x.

With eq.2, P̂ (c|x) can be rewritten as:

P̂ (c|x) = P̂ (x|c)P̂ (c)

P̂ (x)
=

P̂ (c)
∏m

i=1 P̂ (ai|c)
P̂ (x)

, (4)

where assuming all attributes fully independent of each other

given the class. Combining eq.3 with eq.4, we have:

ĉ(x) = argmax
c∈C

P̂ (c)

m∏

i=1

P̂ (ai|c), (5)

as the denominators are all the same and can be omitted.

Thus, before applying Naive Bayes to predict the class label

of a given test instance x, a training process is needed to obtain

the prior probability P̂ (c) and conditional probability P̂ (ak|c).
They are usually calculated as follows with Laplace smoothing

[15].

P̂ (c) =

∑n
i=1 δ(ci, c) +

1
r

n+ 1
, (6)

P̂ (ak|c) =
∑n

i=1 δ(aik, ak)δ(ci, c) +
1
nk∑n

i=1 δ(ci, c) + 1
, (7)

where n is the number of instances in the training set, r is

the number of classes, δ(•) is a function which outputs an

one if its two parameters are identical or a zero otherwise,
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Fig. 2. Naive Bayesian Engine. Diagrammatic processing steps given a test instance x = (a1, ..., am). (a) Calculate νci represented by current Ici . (b) Another
way to calculate Ici and the weight of ith attribute (wi) is stored in the cell resistance. (c) Calculate ϕ(c) for every class c ∈ C by multiple bitlines in the
crossbar array. (d) Analog parallel comparison logic to elect the class that has the minimum ϕ(c).

ci gives the class label of the ith training instance, aik is the

kth attribute value of the ith training instance, and nk is the

number of values for the kth attribute Ak.

As the training process of Naive Bayes is only a simple
statistic of the prior probabilities and the conditional prob-
abilities, in this paper, we assume the training has already
been done and focus on the testing process.

2) Weighted Naive Bayes: The main weakness of NB

classifier is the conditional independence assumption shown

in eq.4. It would harm its classification accuracy when the

assumption is violated in reality. The state of arts of the NB al-

gorithm [15] assigns every attribute different weight to indicate

different importance between each other, which relaxes the

conditional independence assumption. The prediction formula

is formally defined as:

ĉ(x) = argmax
c∈C

P̂ (c)

m∏

i=1

P̂ (ai|c)wi , (8)

where wi is the weight of ith attribute Ai. We can find that

the NB classifier is a special case of the Weighted NB (WNB)

classifier when all wi equal to 1. In later sections, we will
use this more general NB formula.

III. RERAM-BASED NB ACCELERATOR DESIGN

A. NB Formula Transformation

The testing process of the NB classifier is summarized in

eq.8 which cannot be directly applied to the ReRAM crossbar

array. So we apply a log(•) operation to eq.8 and then it is

rewritten as:

ĉ(x) = argmax
c∈C

{ρ̂(c) +
m∑

i=1

wi · ρ̂(ai|c)}, (9)

where ρ̂(•) denotes logP̂ (•).
Let q̂(c) refer to ρ̂(c) +

∑m
i=1 wiρ̂(ai|c). We can write the

calculation of q̂(c) in the form of a dot product �v · �g, where

�v = [1 w1 ... wm] and �g = [ρ̂(c) ρ̂(a1|c) ... ρ̂(am|c)]. So it is

possible to calculate q̂(c) of every class by the MVM ability

of the crossbar array. Detail steps are shown in section III-B.

Another problem is that the value of ρ̂(•) is less than zero

because P̂ (•) ∈ (0, 1). Negative numbers cannot be repre-

sented by the conductance of ReRAM cells as the conductance

is always positive. Thus, the final formula is transformed to:

ĉ(x) = argmin
c∈C

{β̂(c) +
m∑

i=1

wi · β̂(ai|c)}, (10)

where β̂(•) denotes −logP̂ (•) and is always positive. The

−log(•) operation can be directly added to the training pro-

cess. After training, we will store all the prior probabilities and

the conditional probabilities in the array. For convenience, we
make following abbreviations:

νci ≡ wi · β̂(ai|c), ϕ(c) ≡ β̂(c) +
m∑

i=1

νci

B. Mapping NB to the Crossbar Array

Generally, the NB classifier (eq.10) is divided into two steps:
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Fig. 3. Conventional CNN PIM Compatible Design. Implement Min Detector
by the existing max pooling module.

• Calculate ϕ(c) of belonging to every class where c ∈ C.

• Elect the class c that has the minimum ϕ(c).

The crossbar-based hardware implementation of NB is

shown from these two aspects.

1) Calculate ϕ(c): Given the class c and test instance x =
(a1, ..., am), the calculation of ϕ(c) is a dot product operation

represented by [1 w1 ... wm] · [β̂(c) β̂(a1|c) ... β̂(am|c)]. Our

goal is to map this dot product operation to the crossbar array.

After training, we store every prior probability β̂(c) and

every conditional probability β̂(Aj
i |c) in the crossbar array in

the form of ReRAM conductance, where c ∈ C and Aj
i refers

to the jth value of the ith attribute (Ai). Note that ai is the

ith attribute value for the instance x and it belongs to Ai. This

means there must be a j that meets Aj
i = ai. Thus we can

compute the result of ϕ(c) in the way shown in Figure 2(a).

For ith attribute Ai, voltage wi is applied only to the wordline

that ai equals to the Aj
i . The other wordlines belonging to Ai

are grounded. The current gathered on this sub-bitline (Iic)

form the result of νic. With the addition of β̂(c), the final

result of ϕ(c) is obtained as current on one bitline. As shown

in Figure 2(c), multiple bitlines together give answers ϕ(c) to

all classes.

We also propose an optimization to the input voltage. Be-

cause analog input voltage (i.e. wi) might result in inaccuracy

due to the I-V nonlinearity of the ReRAM cell. The weight

wi is included in the cell conductance shown in Figure 2(b).

Only 1-bit input voltages are required.

2) Elect the Minimum ϕ(c): To detect the minimum ϕ(c)
and its source class (Min Detector module in Figure 2(c)),

usually a comparison tree design is needed. By reusing the

existing max pooling module in a conventional CNN PIM

architecture (e.g. PRIME [2]), we first introduce a compatible
design to implement Min Detector. As shown in Figure 3, 4:1

max pooling hardware is adopted and n:1 max pooling can

be achieved by multiple steps (for n > 4). We use the same

logic to elect the minimum ϕ(c) with its source class. First,

the results of ϕ(c) for each c ∈ C are stored in the buffer after

the conversion of ADCs. Second, four inputs {oi} from buffer

are stored in the registers, i = 1, 2, 3, 4. Then, we use ReRAM

array to execute the dot products between {oi} and six sets

of weights [1,-1,0,0], [1,0,-1,0], [1,0,0,-1], [0,1,-1,0], [0,1,0,-

1], [0,0,1,-1]. So the sign results of a = {(oi − oj), i �= j}
are got and then send to Winner Code register (win-code). At

last, according to the code, the maximum (and its source) can

Algorithm 1: Min Detector

Input: Output of every bitline represented by �Vo

Output: Minimum ϕ(c) represented by VMin

and its source class label c
1 if Election Mode = Inc Voltage then
2 Vref ← Vlowest

3 �r ← compare(Vref , �Vo)

4 while �r = �0 do
5 // 1̃ refers to the minimum voltage step

6 Vref ← Vref + 1̃

7 �r ← compare(Vref , �Vo)

8 else /* Election_Mode is Binary_Search */
9 Vl ← Vlowest, Vr ← Vhighest

10 while Vl ≤ Vr do
11 Vmid ← (Vl + Vr) >> 1

12 �r ← compare(Vmid, �Vo)
13 if is OneHot(�r) then
14 Vref ← Vmid

15 break
16 else if �r = �0 then
17 Vl ← Vmid + 1̃
18 else
19 Vr ← Vmid − 1̃

20 VMin ← Vref

21 // find the source class label according to the code �r
22 c ← source(�r)

be determined by the hardware thus the max pooling logic

is implemented. Here we are going to detect the minimum

ϕ(c), then we reverse a and feed it into win-code so that the

output would be the minimum. By reusing this module, the

winner of the previous time is sent to the comparison again

until the final winner (the minimum ϕ(c)) is produced. As a

result, electing the minimum ϕ(c) among n classes requires

�n−1
3 � comparison steps.

Furthermore, the state of art PIM architecture [2, 6] points

out that ADCs are costly in both energy and area. To find the

minimum ϕ(c) and elect its source class, high bit-precision

ADCs are needed in traditional comparison tree design or

our proposed compatible design. Here, we propose an analog

parallel comparison design eliminating the costly ADCs. In

the conventional ReRAM array, a (or multiple) fixed reference

voltage(s) Vref is (are) used during a read operation to

determine the binary (multi-level) logical value stored in the

cell. We introduce an additional voltage controller as shown

in Figure 2(d). The operational amplifier connected to the

each bitline outputs a voltage that represents the value of

ϕ(c). Then the voltage controller generates a dynamically

varying threshold Vref , and Vref is shared by all the voltage

comparators. Vref keeps rising from the lowest voltage. When

Vref is larger than the output voltage of any one operational

amplifier, the corresponding voltage comparator generates a
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Fig. 4. Comparison steps for the increasing mode (Inc. mode) and binary
searching mode (Binary mode).

high-level output. At the same time, Vref stops rising and

keeps its value so that only one voltage comparator generates

a high-level output. The outputs of all voltage comparators

form an one-hot code. Then the One-Hot module parses out

the corresponding source class that represents the minimum

ϕ(c). Instead of using an increasing voltage in the controller,

we also propose a binary searching scheme to faster approach

the result. The pseudo-code for the two strategies (increasing

mode and binary searching mode) is shown in Algo. 1. A DAC

is needed to generate the reference voltage (Vref ). Vlowst and

Vhighest refer to the lowest and highest voltage levels and are

initially stored in the controller calculated by assuming all cells

in HRS or LRS. 1̃ refers to the minimum voltage step. Function

compare is equivalent to the multiple voltage comparators in

Figure 2(d). Function is OneHot(�r) judges whether the input

�r is one-hot code or not. And function source(�r) parses out

the source class according to the �r, which is the One-Hot

module in Figure 2(d).

The basic comparison step for the two searching mode is

depicted in Figure 4. By reducing the search range by half

each time, the binary searching mode has fewer comparisons

in most cases. The reason why we haven’t given up the voltage

increasing mode is that it is simpler and may have fewer

comparisons when the minimum ϕ(c) approaches Vlowst. We

also verify it in the performance evaluation.

C. Case Study of MNIST

The MNIST [16] dataset consists of handwritten digit

images. The goal is to distinguish the digit value of every

image. Every digit image is normalized and centered in a fixed

size of 28×28 pixels. Each pixel is represented by a value

between 0 and 255, where 0 means white and 255 means

black. First, we binarize the value of each pixel to 0 (≤ 127)

and 1 (> 127). So there are 784 (28×28) attributes and each

attribute only consists of two values (0 or 1). The handwritten

digits range from 0 to 9 so that we have 10 classes c1, ..., c10
corresponding to [0, 9]. After training, we store the value of

β̂(cr) and β̂(Aj
i |cr) in the form of cell conduction in the

array as shown in Figure 5(a), where r ∈ [1, 10] (10 classes),

i ∈ [1, 784] (784 attributes), and j ∈ [1, 2] (2 attribute values

for each attribute). Here, we take the ordinary NB algorithm

Fig. 5. (a) Case study of MNIST on ReRAM crossbar array. (b) Attribute
signal input to every attribute group Ai, K = 784.

as an example, which means wi = 1 for all i. In the testing

process, we have a test instance x = (a1, ..., a784) where

ai ∈ Ai. The input voltage is only applied to the wordline

meeting ai = Aj
i (recall Figure 2(b)). So for each attribute,

the input voltages form an one-hot coded value. As shown

in Figure 5(b), the binarized pixel value are one-hot coded

and then input to the array in the form of voltage. Thus, the

NB algorithm of running the MNIST benchmark is achieved

on crossbar arrays. Note that if there are too many attribute

values, we can store them separately in multiple arrays.

IV. EVALUATION

A. Benchmarks

We run our experiments on a collection of 11 benchmarks

including MNIST [16] which is a classical pattern recognition

dataset of handwritten digits. Other benchmarks are selected

from the University of California at Irvine (UCI) repository

[17]. They are all classical classification problems that belong

to a wide range of domains with different data characteristics.

The detailed information of these datasets is shown in Table

I. In some datasets, e.g. anneal, there are missing attribute

values. The missing attribute value is replaced with the mode

of a nominal attribute value if the attribute is discrete or with

the mean of numerical attribute values from the available data

if the attribute is numerical. As the Naive Bayesian algorithm

requires discrete attribute values, numerical values are dis-

cretized using the MDLP cut proposed by [18]. The prior

probabilities P̂ (c) and the conditional probabilities P̂ (ak|c)
of all classes are pre-calculated by the same eqs. 6 and 7 for

every benchmark.

Note that, for those datasets that do not give separated

training and testing set, we introduce the shuffling algorithm

to upset the dataset and then separate it into two parts for

training and testing respectively.

B. Experiment Setup

In our experiments, we compare our NB Engine with a

CPU-based software implementation of NB from aspects of

accuracy and runtime. We also compare the NB Engine with

the CNN PIM compatible design to show the energy and

area efficiency of our design. The software-implemented NB
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Fig. 6. Test accuracy results under the different implementation of NB.

TABLE I
DATASET DESCIPTION

Dataset #Instance #Attribute #Class M.-v.[1] N.-v.[2]

anneal 898 38 6 Y Y
audiology 226 69 24 Y N
breast-w 699 10 2 Y N
credit-a 690 15 2 Y Y
glass 214 10 7 N Y
iris 150 4 3 N Y
isolet 7797 617 26 N Y
kr-vs-kp 3196 37 2 N N
letter 20000 16 26 N Y
mnist 60000 784 10 N N
soybean 683 35 19 Y N

[1] Missing-value : Missing attribute values.
[2] Numeric-value : Numeric attribute values.

algorithm is evaluated in the GEM5 [19] with the NVMain

[20] simulator1 by running the benchmark datasets mentioned

before. Table II shows the system configuration in the simu-

lation.

TABLE II
SIMULATION PARAMETERS

Parameter Value

CPU 4 cores, out of order, 3GHz
L1 I&D-Cache Private, 16KB I-cache, 16KB D-cache,

2-way, 2 cycles access
L2 Cache Shared, 4MB, 16-way, 20 cycles access,

64-byte cache line
DRAM Memory 4GB, DDR3-1333, 2 channels,

2 rank per channel, 8 banks per rank,
tRCD-tCL-tWR-tWTR-tCWD 9-10-10-5-7

To evaluate our crossbar-based NB Engine, we modify the

NeuroSim [21] which is an integrated simulation framework

for benchmarking synaptic devices and array architecture. Our

test parameters are set as follows. We choose 32nm technology

node for the design and adopt an ideal synaptic ReRAM device

and a Ag:a-Si stacked ReRAM device proposed by [11] to

evaluate the NB engine respectively. The parameters of the

two devices are shown in Table III. The nonlinear weight

update [22], C2C device variation [23], and interconnect IR-

drop [24, 25] are included in the simulation for the real device

(Ag:a-Si). The details of these non-ideal parameters can be

found in NeuroSim. The ADC, DAC, and comparator we refer

to are shown in [26]. For simplicity, our experiments only

consider the ordinary NB algorithm which assumes wi = 1.

1The GEM5 and NVMain simulator form an effective full-system simula-
tion to evaluate the program.

But remember, the improved NB algorithm (WNB) has been

considered in our design.

TABLE III
DEVICE PARAMETERS

Ag:a-Si Ideal Device
# of conductance states 97 97

Nonlinearity
(weight inc./dec.)

2.4/-4.88 0/0

RON 26MΩ 26MΩ
ON/OFF ratio 12.5 12.5
Cycle-to-Cycle
variation (σ)

3.5% 0%

Interconnect IR-drop YES NO

C. Classification Accuracy Results

1) Test Accuracy: For the evaluation purpose, here we

compare the test accuracy of the NB Engine with the software-

implemented NB classifier. We test NB Engines in two con-

figurations as mentioned before, one using the real ReRAM

device and the other using the ideal ReRAM device, which

is abbreviated as ‘NB Engine’ and ‘Ideal’ in the figure

respectively. The voltage controllers in the two configurations

are all set with the 8-bit precision DAC. In addition, the

CNN PIM compatible design is another comparison reference

(abbreviated as ‘Compatible’ in the figure) which is configured

with 8-bit precision ADCs based on the real device.

Figure 6 depicts the test accuracy results under the different

implementations of the NB algorithm by running benchmarks

described earlier. In most benchmarks, software-implemented

NB classifier achieves highest test accuracy and it gets an

average accuracy of 89.6%. In all benchmarks except for

Soybean, we find that the NB Engine based on ideal devices

always has lower accuracy than software implementation with

a maximum degradation of 11.6% in audiology. In Soybean,

the improvement of the accuracy might come from the gen-

eralization ability of the low bit-precision values (compared

with the float point values in the software implementation).

But in most cases, lower bit-precision values result in lower

test accuracy.

Our NB Engine based on the real device achieves an

average test accuracy of 88.2% which is only worse than the

software implementation with negligible accuracy degradation

of −1.4%. This demonstrates the tolerance of the NB Engine

to the variations. In some benchmarks, e.g. audiology and kr-

vs-kp, the accuracy of the NB Engine based on the ideal device

decreases dramatically, whereas the NB Engine based on the
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Fig. 7. Test accuracy results under different bit-precision NB Engine.

real device does not. The noises of C2C variations, nonlinear

weight update, and etc. provide a form of regularization

helping to generalize better, which is also proved in software

machine learning algorithms [27, 28].

The results of the CNN PIM compatible design are similar

to our real-device-based NB Engine with a little accuracy

degradation in MNIST (−2.4%). The possible reason might

be the problem of bias accumulation after the numerical

conversion of ADCs. We require several arrays to complete

the NB algorithm for MNIST. After the conversion of ADCs,

the value actually has some biases. Then the accumulations

between the results from ADCs of every array cause some

deviations in the final outputs which degrades the accuracy.

2) The sensitivity to the bit-precision of the voltage con-
troller: For the NB Engine, we vary the bit-precision of the

DAC in the voltage controller to study its sensitivity. The

NB Engine with different bit-precision DAC is abbreviated

as ‘Engine bit-n’ in the figure, e.g. Engine bit-8. The test

results are in good agreement with common sense. As the

bit-precision of the voltage controller decreases, the test ac-

curacy of benchmarks decreases as well. In addition, different

benchmarks have different tolerances to the bit-precision of the

voltage controller. With the decrease of the bit-precision, the

NB Engine remains a stable test accuracy in some benchmarks

such as breast-w, while suffers from considerable accuracy

loss in some other benchmarks such as Audiology. Note that
the results of the sensitivity analysis here are not aiming to

use a low bit-precision DAC in the voltage controller. The

bit-precision of the DAC is fixed to 8 to satisfy all kinds of

applications. But we can choose a larger searching pace for

Min Detector according to the benchmark characteristics if the

benchmark is tolerant to the bit-precision. A larger searching

pace each time of Min Detector can further improve test

speed as fewer comparisons are needed. Moreover, because the

voltage controller is shared by the whole array (even multiple

arrays), one 8-bit DAC does not cause large area overhead. In

later evaluations, the bit-precision of the DAC in the voltage

controller is set to 8-bit if no otherwise specified.

D. Performance Results

1) Speedup normalized to the software implementation:
Figure 8 depicts the normalized runtime speedup with respect

to the software-implemented NB classifier. The results show

that our NB Engine gains a up to 2289.6× runtime speedup.

A performance improvement of 235.2×, 2289.6×, 65.1×,

1057.0×, and 110.3× is gained in Audiology, Isolet, Letter,

Fig. 8. Runtime Speedup normalized to CPU.

MNIST, and Soybean respectively. But in other benchmarks,

there is only a little improvement. It can be found that the more

attributes and classes that a benchmark has (see figure I), the

more performance improvements can NB Engine gain. This

is because when there are only a few attributes2 and classes,

the advantages of parallel MVM operations in the crossbar

array will not bring significant performance improvements as

the scale of the MVM operation is too small.

2) The sensitivity to the bit-precision and searching mode of
the voltage controller: Figure 9 shows the influence of the bit-

precision and searching mode in the NB Engine. The results

are normalized to the 8-bit precision voltage controller with

binary searching mode. In the figure, inc. is the abbreviation

for the voltage increasing mode and bit-n represents that the

n-bit precision is used. Here, we show four representative

benchmarks. As mentioned earlier, the bit-precision of the

voltage controller is fixed to 8. The change of the bit-precision

here only represents a larger searching pace each time.

The results show that a lower bit-precision DAC in the

voltage controller leads to fewer comparisons for NB Engine

in both two searching modes. In most benchmarks (not shown

here), the results are similar to that in Isolet, which validates

the effectiveness of the binary searching mode. But in some

benchmarks, the NB Engine performs better using voltage

increasing mode with a lower bit-precision DAC (e.g. 5-

bit precision mode in Audiology, Glass, and MNIST). The

reason is that a smaller result value is tended to be produced

in these benchmarks. So the voltage increasing mode which

starts comparisons from the lowest voltage value has fewer

comparisons than the binary searching mode which is basically

stable. Thus, we can use a low-precision DAC with voltage

increasing mode to accomplish better performance in those

benchmarks if the test accuracy is also acceptable (e.g. Glass

2More specifically, we refer to the number of attribute values
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Fig. 9. Average number of comparisons in NB Engines under different bit-
precision DAC and different searching mode. The results are normalized to
the 8-bit precision DAC with the binary searching mode.

(a) (b)

Fig. 10. Energy consumption (a) and Area distribution (b) normalized to the
CNN PIM compatible design.

in the 5-bit precision mode or Audiology in the 6-bit precision

mode).

E. Energy & Area Results

We take MNIST benchmark as an example to show the

energy and area efficiency of our design. In the CNN PIM

compatible design, the number of ADC is set to 10 as MNIST

has 10 classes. The number of arrays meets the need of MNIST

and the ADCs are shared by these arrays. We don’t set 10

ADCs per array as the ADC is too costly in both energy and

area. Later tests validate that even if there are only 10 ADCs,

they still dominate the energy consumption and area.

Figure 10 shows the energy consumption per test instance of

NB Engine compared with the CNN PIM compatible design.

In the compatible design, the ADCs dominate nearly 100%

energy consumption. That is because the ReRAM cell we

choose has a high resistance (Ron = 26MΩ) so that the

arrays only consume little energy. Our NB Engine consumes

only 3.8% energy (96.2% saved) with respect to the CNN

PIM compatible design. On the one hand, the elimination

of high bit-precision ADCs used in the conventional PIM

architecture results in energy saving. On the other hand,

multiple steps (longer processing time) are needed in the

compatible design as ADCs are shared by arrays. The NB

Engine processes a test instance with a shorter time that further

reduces energy consumption. Increasing the number of ADCs

to reduce processing time in the compatible design cannot

solve the problem as the total power consumption of ADCs

increases proportionately.

The area distribution is shown in Figure 10. A wl/blSwitch-

Matrix is adopted for fully parallel voltage input to the array

rows or columns, which is specially designed for matrix-

vector multiplication [21]. Our NB Engine saves 45.2% area

compared with the CNN PIM compatible design. The area

overhead of the interface ratio decreases from 51.9% to 1.8%.

V. CONCLUSION

In this paper, we build a novel analog computing architec-

ture for the NB algorithm based on ReRAM crossbar arrays.

The special design of the probability calculation by the MVM

ability of the ReRAM crossbar array is well discussed. More-

over, we propose a novel parallel comparison design without

high bit-precision ADCs to elect the source class (the final

result). The robustness of our design under device variations is

also demonstrated. The NB Engine shows negligible accuracy

loss or even improvements in some benchmarks due to a form

of regularization provided by the variations (noises). A up to

2289.6× runtime speedup is achieved in the NB Engine com-

pared with the software implementation. Besides, we analyze

the performance factors including benchmark characteristics

(the number of attributes and classes), bit-precision of the

voltage controller, and the election mode. In addition, the

NB Engine saves 96.2% energy consumption and 45.2% area

compared with the CNN PIM compatible design.
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